LDR 02990cam 2200529 i 4500 001 9947797007626 005 20230927105831.0 008 090130s2009 nyuad b 001 0 eng^^ 010 |a2008941148 020 |a9780387848570 020 |a0387848576 020 |a9780387848846|q(paperback) 020 |a0387848843|q(paperback) 020 |z9780387848587|q(electronic) 020 |z0387848584|q(electronic) 035 |a(OCoLC)ocn300478243 040 |aNUI|beng|erda|cNUI|dYDXCP|dCTB|dCDX|dBWX|dIXA|dOHX|dOCLCQ|dOCL|dUBA|dSNK|dAUW|dDLC|dHEBIS|dDEBBG|dOCL|dDEBSZ|dCHRRO|dGZM|dMYG|dALAUL|dUKMGB|dOCLCQ|dOHS|dFDA|dOCLCF|dOCLCQ|dOCLCO|dKLH|dOCLCQ|dUSU|dEYM|dTSC|dOCLCQ|dTFW|dOCLCO|dNJR|dDHA|dOCLCA|dOCLCQ|dGILDS|dOCLCO|dGZH|dZLM|dIPL|dOCLCO|dJVH|dOCLCO|dMNI|dOCLCO|dMST|dOCLCO|dGZN|dOCLCO|dCAI|dOCLCO|dSNN|dOCLCQ|dOCLCO|dIPS|dUKUOY|dOCLCA|dYOU|dOCLCQ|dHUELT|dOCLCO|dAZU|dNZHMA|dOCLCA|dOCLCQ|dOCLCO|dOCLCA|dAZDAC|dOCLCA|dTXHLS|dOCLCO|dIL4J6|dOCLCO|dANO|dOCLCO 050 4 |aQ325.75|b.H37 2009 082 04 |a006.3/1 22|222 090 |aQ325.75|b.H37 2009 100 1 |aHastie, Trevor,|eauthor. 245 14 |aThe elements of statistical learning :|bdata mining, inference, and prediction /|cTrevor Hastie, Robert Tibshirani, Jerome Friedman. 250 |aSecond edition. 264 1 |aNew York :|bSpringer,|c[2009] 300 |axxii, 745 pages :|billustrations (some color), charts ;|c24 cm. 336 |atext|btxt|2rdacontent 337 |aunmediated|bn|2rdamedia 338 |avolume|bnc|2rdacarrier 490 1 |aSpringer series in statistics,|x0172-7397 504 |aIncludes bibliographical references (pages 699-727) and indexes. 505 00 |g1.|tIntroduction --|g2.|tOverview of supervised learning --|g3.|tLinear methods for regression --|g4.|tLinear methods for classification --|g5.|tBasis expansions and regularization --|g6.|tKernel smoothing methods --|g7.|tModel assessment and selection --|g8.|tModel inference and averaging --|g9.|tAdditive models, trees, and related methods --|g10.|tBoosting and additive trees --|g11.|tNeural networks --|g12.|tSupport vector machines and flexible discriminants --|g13.|tPrototype methods and nearest-neighbors --|g14.|tUnsupervised learning --|g15.|tRandom forests --|g16.|tEnsemble learning --|g17.|tUndirected graphical models --|g18.|tHigh-dimensional problems: p>> N. 650 0 |aSupervised learning (Machine learning) 650 0 |aElectronic data processing. 650 0 |aStatistics. 650 0 |aBiology|xData processing. 650 0 |aComputational biology. 650 0 |aMathematics|xData processing. 650 0 |aData mining. 650 0 |aArtificial intelligence. 650 0 |aLearning. 650 12 |aArtificial Intelligence 650 2 |aComputational Biology 650 2 |aData Mining 700 1 |aTibshirani, Robert,|eauthor. 700 1 |aFriedman, J. H.|q(Jerome H.),|eauthor. 830 0 |aSpringer series in statistics.